Refine Your Search

Topic

null

Affiliation

Search Results

Technical Paper

Effects of Fuel Properties on Combustion and Exhaust Emissions of Homogeneous Charge Compression Ignition (HCCI) Engine

2004-06-08
2004-01-1966
Homogeneous Charge Compression Ignition (HCCI) is effective for the simultaneous reduction of soot and NOx emissions from diesel engine. In general, high octane number and volatility fuels (gasoline components or gaseous fuels) are used for HCCI operation, because very lean mixture must be formed during ignition delay of the fuel. However, it is necessary to improve fuel injection systems, when these fuels are used in diesel engine. The purpose of the present study is the achievement of HCCI combustion in DI diesel engine without the large-scale improvements of engine components. Various high octane number fuels are mixed with diesel fuel as a base fuel, and the mixed fuels are directly applied to DI diesel engine. At first, the cylinder pressure and heat release rate of each mixed fuel are analyzed. The ignition delay of HCCI operation decreases with an increase in the operation load, although that of conventional diesel operation does not almost varied.
Technical Paper

Comparative Measurement of Nano-Particulates in Diesel Engine Exhaust Gas by Laser-Induced Incandescence (LII) and Scanning Mobility Particle Sizer (SMPS)

2004-06-08
2004-01-1982
Particulate Matter (PM) from diesel engines is thought to be seriously hazardous for human health. Generally, it is said that the hazard depends on the total number and surface area of particles rather than total mass of PM. In the conventional gravimetric method, only the total mass of PM is measured. Therefore, it is very important to measure not only the mass of PM but also size and number density of particulates. Laser-Induced Incandescence (LII) is a useful diagnostic for transient measurement of soot particulate volume fraction and primary particle size. On the other hand, Scanning Mobility Particle Sizer (SMPS) is also used to measure the size distribution of soot aggregate particulates at a steady state condition. However, the measurement processes and the phenomena used to acquire the information on soot particulate are quite different between the LII and SMPS methods. Therefore, it is necessary to understand the detailed characteristics of both LII and SMPS.
Technical Paper

A New Type Partial Flow Dilution Tunnel with Geometrical Partitioning for Diesel Particulate Measurement

2001-09-24
2001-01-3579
The authors have developed a new partial flow dilution tunnel (hereafter referred to as PPFT), whose principal device is a flux splitting gas divider, as a new means of measuring particulate emissions which can be applied to transient cycle testing of diesel engines. The advantage of this system is that it can achieve perfect constant velocity splitting by means of its structure, and theoretically can also maintain high splitting performance despite fluctuations in the exhaust flow rate, including those due to engine exhaust pulsation. We compared this system with a full tunnel by analyzing the basic performance of the system and measuring particulate matter (PM) using an actual vehicle engine.
Technical Paper

Study of the Effect of Boiling Point on Combustion and PM Emissions in a Compression Ignition Engine Using Two-Component n-Paraffin Fuels

2002-03-04
2002-01-0871
Fuel composition is investigated as a parameter influencing fuel/air mixing of direct injected fuel and the subsequent consequences for particulate emissions. Presumably, enhanced mixing prior to ignition results in a larger portion of fuel burning as a premixture and a smaller portion of diffusion burning around fuel-rich regions. This would potentially lower particulate emissions without overly compromising hydrocarbon emissions or high load operation. Using mixtures of n-paraffin fuels, particulate emissions were measured and the results were compared with in-cylinder visualization of the injection process and two-color method calculations of flame temperature. In general, lower boiling point fuels exhibited higher flame temperatures, less visible flame, and lower particulate emissions.
Technical Paper

Effect of Boiling Point Differences of Two-Component Normal Paraffin Fuels on Combustion and Emission in CI Engines

2003-03-03
2003-01-0757
The effect of boiling point difference as well as the flash boiling of two-component normal paraffin fuels on combustion and exhaust emission has been examined under different test conditions. To obtain a wide variation in boiling point between components different high boiling point fuels (n-undecane, n-tridecane and n-hexadecane) were blended with a low boiling point fuel (n-pentane) and different low boiling point fuels (n-pentane, n-hexane, and n-heptane) were blended with a high boiling point fuel (n-hexadecane). In addition the volume fraction of n-pentane was varied to have the best mixture ratio with n-tridecane. These fuel combinations exhibit different potential for flash boiling based on a certain ambient condition. The results indicate that though the potential for flash boiling is the highest for a mixture of n-pentane and n-hexadecane it emits about 20% higher PM than a mixture of n-pentane and n-tridecane.
Technical Paper

Application of Surovikin's Carbon Black Model for Simulating Soot Emission from Diesel Engine Using a Three Dimensional KIVA Code

2003-05-19
2003-01-1851
A soot model based on the kinetics of the formation of particles of carbon black, starting from radical nuclei to particle nuclei, is formulated and implemented to a 3 dimensional KIVA code. Model is capable of predicting total in-cylinder soot concentration and particle size distribution. Empirical parameters were tuned for the total soot emission of a single cylinder DI diesel engine. Model predicted results are quite consistent with reported experimental observations.
Technical Paper

Numerical Simulation of Multicomponent Fuel Spray

2003-05-19
2003-01-1838
Fuel design for internal combustion engines has been proposed in our study. In this concept, the multicomponent fuel with high and low volatility fuels are used in order to control the spray and combustion processes in internal combustion engine. Therefore, it is necessary to understand the spray and combustion characteristics of the multicomponent fuels in detail. In the present study, the modeling of multicomponent spray vaporization was conducted using KIVA3V code. The physical fuel properties of multicomponent fuel were estimated using the source code of NIST Mixture Property Database. Peng-Robinson equation of state and fugacity calculation were applied to the estimation of liquid-vapor equilibrium in order to take account for non-ideal vaporization process. Two-zone model in which fuel droplet was divided into droplet surface and inner core was introduced in order to simply consider the temperature distribution in fuel droplet.
Technical Paper

Exhaust Emission Behavior of Mixed Fuels having Different Component Cetane Number and Boiling Point

2003-05-19
2003-01-1868
To clarify the effect of fuel properties on diesel exhaust emissions, direct injection of two component fuels with approximately zero aromatic content and sulfur were attempted in a diesel engine. Fuels were prepared using paraffins having different cetane numbers and boiling points. Parameters considered are the Average Boiling Point (ABP) by volume and the difference of component characteristics for the same ABP. The results indicate that the trade off relation between NOx and particulate matter (PM) emissions depends significantly on ABP or density and is independent of the fuel component. On the other hand, components of the mixed fuels have significant influence on SOF and THC emissions. Fuels having higher amount of low boiling point components emit higher THC. Mixtures of low boiling point-high cetane number fuel and high boiling point-low cetane number fuel or fuel that contains normal paraffins only emit higher SOF.
Technical Paper

Effective BSFC and NOx Reduction on Super Clean Diesel of Heavy Duty Diesel Engine by High Boosting and High EGR Rate

2011-04-12
2011-01-0369
Reduction of exhaust emissions and BSFC was studied for high pressure, wide range, and high EGR rates in a Super-clean Diesel six-cylinder heavy duty engine. The GVW 25-ton vehicle has 10.52 L engine displacement, with maximum power of 300 kW and maximum torque of 1842 Nm. The engine is equipped with high-pressure fuel injection of a 200 MPa level common-rail system. A variable geometry turbocharger (VGT) was newly designed. The maximum pressure ratio of the compressor is about twice that of the previous design: 2.5. Additionally, wide range and a high EGR rate are achieved by high pressure-loop EGR (HP-EGR) and low pressure-loop EGR (LP-EGR) with described VGT and high-pressure fuel injection. The HP-EGR can reduce NOx concentrations in the exhaust pipe, but the high EGR rate worsens smoke. The HP-EGR system layout has an important shortcoming: it has great differences of the intake EGR gas amount into each cylinder, worsens smoke.
Technical Paper

Effect of Fuel Properties of Biodiesel on Its Combustion and Emission Characteristics

2011-08-30
2011-01-1939
The use of biofuel is essential for the reduction of greenhouse gas emission. This paper highlights the use of biodiesel as a means of reducing greenhouse gas emission from the diesel engine of heavy-duty vehicles. Biodiesel is fatty acid methyl ester (FAME) obtained through ester exchange reaction by adding methanol to oil, such as rapeseed oil, soybean oil, palm oil, etc. The CO₂ emission from combustion of biodiesel is defined to be equivalent to the CO₂ volume absorbed by its raw materials or plants in their course of growth. On the other hand, however, biodiesel is known to increase the NOx emission when compared with operating with conventional diesel fuel, then suppressing this increase is regarded as a critical issue. This study is intended to identify the fuel properties of biodiesel free from increase in the NOx emission.
Technical Paper

Development of High Pressure H2 Gas Injectors, Capable of Injection at Large Injection Rate and High Response Using a Common-rail Type Actuating System for a 4-cylinder, 4.7-liter Total Displacement, Spark Ignition Hydrogen Engine

2011-08-30
2011-01-2005
Key requirements of engines for vehicles are large output power and high efficiency, low emission as well as small size and light weight. Hydrogen combustion engines with direct injection have the characteristics to meet these factors. Tokyo City University, former Musashi Institute of Technology, has studied hydrogen fueled engines with direct injection since 1971. The key technology in the development of hydrogen fueled engines is the hydrogen injector for direct injection with the features such as high injection rate, high response and no hydrogen gas leakage from the needle valve of the hydrogen injector. A common-rail type system to actuate the needle valves of the high pressure hydrogen injectors was intentionally applied to fulfill good performances such as large injection rate, high response and no hydrogen gas leakage.
Technical Paper

BSFC Improvement and NOx Reduction by Sequential Turbo System in a Heavy Duty Diesel Engine

2012-04-16
2012-01-0712
Reduction of exhaust emissions and BSFC has been studied using a high boost, a wide range and high-rate EGR in a Super Clean Diesel, six-cylinder heavy duty engine. In the previous single-turbocharging system, the turbocharger was selected to yield maximum torque and power. The selected turbocharger was designed for high boosting, with maximum pressure of about twice that of the current one, using a titanium compressor. However, an important issue arose in this system: avoidance of high boosting at low engine speed. A sequential and series turbo system was proposed to improve the torque at low engine speeds. This turbo system has two turbochargers of different sizes with variable geometry turbines. At low engine speed, the small turbocharger performs most of the work. At medium engine speed, the small turbocharger and large turbocharger mainly work in series.
Technical Paper

Transient Exhaust Gas Recirculation Ratio Measurement Utilizing Heated NDIR Method

2012-04-16
2012-01-0886
Most of the recent clean diesel engines are equipped with an exhaust gas recirculation (EGR) technology in order to meet the strict criteria of NOx and particulate matter (PM) as required in the current emission regulations. More attention to strict EGR control is becoming required. Accurate and fast transient EGR ratio operation is becoming very critical in the field of the emission control. The EGR ratio is typically monitored by CO₂ trace method, in which CO₂ emitted from engine, is utilized as a tracer gas. The EGR ratio can be obtained from CO₂ concentration measured at engine intake and engine out at the same time. In this study, authors have developed a new EGR analyzer consisting of two CO₂ detectors, to achieve required performance for transient measurement, i.e., short delay time and quick response, negligible difference between two CO₂ detectors, and capability of wet measurement.
Technical Paper

Advanced Diesel Combustion Using of Wide Range, High Boosted and Cooled EGR System by Single Cylinder Engine

2006-04-03
2006-01-0077
For reducing exhaust emissions of heavy-duty diesel engines, the authors made an experimental study of diesel combustion using a single cylinder engine. The engine performance and exhaust emissions have been measured using a wide range and high EGR rate under the conditions of high boost intake pressure. The engine test cell has been equipped the external supercharger that is able to raise the boost pressure to 500 kPa, and also equipped the EGR system to increase the EGR rate until 50% under the 500 kPa boost condition. In various test conditions of load and engine speeds the authors have obtained the results, that is, NOx has been reduced drastically without increasing Particulate Matter (PM).
Technical Paper

Application of Biodiesel Fuel to Modern Diesel Engine

2006-04-03
2006-01-0233
The 1997 Kyoto protocol came into effect in February, 2005 to reduce greenhouse gases within the period 2008-2012 by at least 5 % with respect to 1990 levels. Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because BDF is carbon neutral in principle. The purpose of this project is to produce a light-duty biodiesel truck which can be suitable for emission regulation in next generation. The effect of BDF on the performance and emissions of modern diesel engine which was equipped with the aftertreatment for PM and NOx emissions was investigated without modifications of engine components and parameters, as a first step for research and development of biodiesel engine. Rapeseed oil methyl ester (RME) was selected in behalf of BDF, and combustion characteristics, engine performance and exhaust emissions were made a comparison between RME and petroleum diesel fuel by steady operation and Japan transient mode (JE05) tests.
Technical Paper

Analysis of Reaction Mechanisms Controlling Cool and Thermal Flame with DME Fueled HCCI Engines

2006-10-16
2006-01-3299
Autoignition in the homogeneous charge compression ignition (HCCI) process typically exhibits heat release in two stages called cool flame and thermal flame. The mechanisms governing these two stages were investigated using a DME-fueled HCCI engine and numerical simulations. Composition analysis after cool flame showed that the cool flame is explained by a chain reaction mechanism in which the chain terminator is the intermediate species formed in cool flame. In the case of thermal flame, although the chain reaction mechanism is complex, the behavior is clearly described by thermal explosion theory in which the rate-determining reaction is H2O2 decomposition.
Technical Paper

Achievement of Medium Engine Speed and Load Premixed Diesel Combustion with Variable Valve Timing

2006-04-03
2006-01-0203
A variable valve timing (VVT) mechanism was applied to achieve premixed diesel combustion at higher load for low emissions and high thermal efficiency in a light duty diesel engine. By means of late intake valve closing (LIVC), compressed gas temperatures near the top dead center are lowered, thereby preventing too early ignition and increasing ignition delay to enhance fuel-air mixing. The variability of effective compression ratio has significant potential for ignition timing control of conventional diesel fuel mixtures. At the same time, the expansion ratio is kept constant to ensure thermal efficiency. Combining the control of LIVC, EGR, supercharging systems and high-pressure fuel injection equipment can simultaneously reduce NOx and smoke. The NOx and smoke suppression mechanism in the premixed diesel combustion was analyzed using the 3D-CFD code combined with detailed chemistry.
Technical Paper

Real-Time Measurement of Particle Size Distribution From Diesel Engines Equipped With Continuous Regenerative DPF Under a Transient Driving Condition

2004-06-08
2004-01-1984
A new PM measurement method, such as particle measurement equipments, samplings and so on, is being studied at present for a type approval test in the future. Particles emitted from diesel engines, especially the particles that are called “Nuclei Mode Particles” are very unstable and easily influenced by the engine operating conditions and the measurement conditions. Most of nuclei mode particles are said to consist of volatile organic particles with mainly high carbon numbers. It is said that a continuous regenerative type DPF (Diesel Particulate Filter) consisting of oxidation catalyst and ceramic filter will prevail in the near future. These particles may be able to be reduced by an oxidation catalyst in this DPF.
Technical Paper

Visualization Experiment in a Transparent Engine With Pure and Mixed Normal Paraffin Fuels

2004-06-08
2004-01-2018
In the previous study design of two-component normal paraffin fuel was attempted considering the components and blending ratio. Only the thermodynamic analysis of combustion and analysis of emission characteristics were performed to evaluate the design performance. In this study mixture formation behavior and combustion phenomena of pure and mixed n-paraffin fuels were investigated by direct visualization in an AVL engine with bottom view piston. The experiments included laser-illuminated high-speed photography of the fuel injection phase and combustion phase to investigate physical differences. The results obtained for the proposed fuels are compared with the results of conventional diesel fuel. It was found that the two component normal paraffin fuels with similar thermo physical properties have very similar spray development pattern but evaporation rates are different.
Technical Paper

Development of a Real-time NH3 Gas Analyzer Utilizing Chemi-luminescence Detection for Vehicle Emission Measurement

2004-10-25
2004-01-2907
Recently, after-treatment techniques for diesel engine emission have made remarkable progress with the development of suitable De-NOx catalysts. The urea-injection SCR system is one of the candidates for a high efficiency De-NOx method for diesel engine emissions. This system reduces NOx through a reaction with ammonia (NH3) that is generated from injected urea. In this system, it is very important to control the amount and timing of the urea injection so as to minimize the NH3 gas slip. Therefore, NH3 gas measurement is becoming important during the development of NOx after-treatment systems even though NH3 is not a target component of the current emission regulations. In this paper, a new NH3 gas analyzer utilizing a chemi-luminescence detection (CLD) method has been developed. The new NH3 analyzer consists of dual detectors (DCLDs) and a furnace for a NH3 oxidization catalyst. Real-time concentration of NH3 can be calculated from the difference of NOx readings of two detectors.
X